Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain
نویسندگان
چکیده
Ovarian cancer is the most lethal gynecologic disease because usually, it is lately sensed, easily acquires chemoresistance, and has a high recurrence rate. Recent studies suggest that ovarian cancer stem cells (CSCs) are involved in these malignancies. Here, we demonstrated that galectin-3 maintains ovarian CSCs by activating the Notch1 intracellular domain (NICD1). The number and size of ovarian CSCs decreased in the absence of galectin-3, and overexpression of galectin-3 increased them. Overexpression of galectin-3 increased the resistance for cisplatin and paclitaxel-induced cell death. Silencing of galectin-3 decreased the migration and invasion of ovarian cancer cells, and overexpression of galectin-3 reversed these effects. The Notch signaling pathway was strongly activated by galectin-3 overexpression in A2780 cells. Silencing of galectin-3 reduced the levels of cleaved NICD1 and expression of the Notch target genes, Hes1 and Hey1. Overexpression of galectin-3 induced NICD1 cleavage and increased expression of Hes1 and Hey1. Moreover, overexpression of galectin-3 increased the nuclear translocation of NICD1. Interestingly, the carbohydrate recognition domain of galectin-3 interacted with NICD1. Overexpression of galectin-3 increased tumor burden in A2780 ovarian cancer xenografted mice. Increased expression of galectin-3 was detected in advanced stages, compared to stage 1 or 2 in ovarian cancer patients, suggesting that galectin-3 supports stemness of these cells. Based on these results, we suggest that targeting galectin-3 may be a potent approach for improving ovarian cancer therapy.
منابع مشابه
Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer
Hypoxia and NOTCH signaling have been reported to be associated with the self-renewal and drug resistance of cancer stem cells (CSCs). However, the molecular mechanisms by which hypoxia and NOTCH signaling stimulate the self-renewal and drug resistance of ovarian CSCs are poorly understood. In the present study, we identified SOX2 as a key transcription factor for CSC-like characteristics in th...
متن کاملCleaved CD44 intracellular domain supports activation of stemness factors and promotes tumorigenesis of breast cancer
CD44 plays a role in the progression of tumors and is expressed in cancer stem cells (CSCs). However, the mechanisms underlying the crosstalk of CD44 with stemness genes in CSC maintenance remains unclear. In this study, we demonstrated how the cleaved intracellular domain of CD44 (CD44ICD) activates stemness factors such as Nanog, Sox2 and Oct4, and contributes to the tumorigenesis of breast c...
متن کاملGalectin-3 augments tumor initiating property and tumorigenicity of lung cancer through interaction with β-catenin
Cancer stem cells (CSCs) are comprised of a rare sub-population of cells in tumors that have been proposed to be responsible for high recurrence rates and resistance to chemotherapy. Galectins are highly expressed in cancers that correlate with the aggressiveness of tumors. Galectins may also promote the resistance of cancer cells to chemotherapy. However, the role of galectins in CSCs remains ...
متن کاملEvaluating the Expression of Oct4 as a Prognostic Tumor Marker in Bladder Cancer
Objective(s)The key transcriptional regulator Oct4 is one of the self-renewal and differentiation-related factors in cancer stem cells, where it maintains "stemness" state. Cancer stem cells have been identified in a variety of solid malignancies. They are a small population of tumor cells with stem cell characteristics, which are a likely cause of relapse in cancer patients. Due to high incide...
متن کاملSafflower Seed Oil, Containing Oleic Acid and Palmitic Acid, Enhances the Stemness of Cultured Embryonic Neural Stem Cells through Notch1 and Induces Neuronal Differentiation
Embryonic neural stem cells (eNSCs) could differentiate into neurons, astrocytes and oligodendrocytes. This study was aimed to determine the effect of safflower seed oil, which contains linoleic acid (LA), oleic acid (OA), and palmitic acid (PA), on cultured eNSC proliferation and differentiation, in comparison to linoleic acid alone. Results showed that safflower seed oil, but not LA, increase...
متن کامل